

1

Approximating non-linear algebraic equations

- We continue by finding approximations to solutions to a non-linear equation
- We convert any non-linear equation to a root-finding problem

$$
f(x)=0
$$

- We will use seven approaches:
- Newton's method Taylor series
- Bisection method Bracketing
- Bracketed secant method Bracketing and linear interpolation
- Secant method Linear interpolation
- Muller's method Quadratic interpolation
- Inverse quadratic interpolation Quadratic interpolation
- Brent-Dekker method $\quad 2^{\text {nd }}, 3^{\text {rd }}$ and $6{ }^{\text {th }}$ methods

3

Approximating the solution to a non-linear algebraic equation

Approximating non-linear algebraic equations

- All these techniques will use iteration
- What are the halting conditions?
- We want to make sure we are likely close to a root

$$
\left|x_{n+1}-x_{n}\right|<\varepsilon_{\text {step }}
$$

- We want to make sure it is a root and not a discontinuity

$$
\left|f\left(x_{n+1}\right)\right|<\varepsilon_{\mathrm{abs}}
$$

Solutions to equations

- Reviewing definitions:
- A tangent line is a line that touches a curve at one point
- A secant line is one that intersects a curve at two points

Solutions to equations

- A first-order Taylor series approximation defines a tangent line to a point on a curve
- This assumes the function is differentiable at the point
- It may intersect the curve elsewhere, but at the point it is tangent
- A linear interpolating polynomial defines a secant line

Equal or opposite signs?

- In C++, there is the std: :signbit(double x) function
- It is in the cmath library
- It returns the sign bit as a Boolean value
- If the sign bit is 1 , the number is negative and true is returned
- Otherwise, the sign bit is 0 , the number is positive, and false is returned
- We test if two variables x and y have the same sign with

```
if ( std::signbit( x ) == std::signbit( y ) ) {
    // do something
}
```


7

- In MATLAB, there is the sign(x) function
- It returns:
- 0 if the argument is zero
- 1 if the argument is positive
- -1 if the argument is negative
- We test if two non-zero variables x and y have the same sign with

```
if sign( x ) == sign( y )
    % do something
end
```


Summary

- Following this topic, you now
- Understand we are looking at four root-finding techniques
- Each uses different tools to find the root
- Each uses iteration
- Understand that we have two halting conditions, both of which must be satisfied
- Have reviewed the definitions of a tangent line and secant line
- Are aware of the std: : signbit (...) function and the sign(...)

9

Acknowledgments

None so far.

Disclaimer

These slides are provided for the ECE 204 Numerical methods course taught at the University of Waterloo. The material in it reflects the author's best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.

